

## EDITOR'S NOTE

*Further studies by eDNA metabarcoding of the ecology of the Grey Waxcap (*Cuphophyllum lacmus*) and other fungi on Lundy* by Ruben Mole, John N. Hedger, Alan Rowland, Andrew P. Detheridge and Gareth W. Griffith...follows this note.

In view of the 'information dense' nature of their account I felt it might be useful to explain some of the technical terms used, listed in the table below, most of which will be unfamiliar to many Lundy Field Society members. The project, which arose from previous field work done by LFS members, was supported by LFS grants to the lead author, Ruben Mole and to Professor Gareth Griffith.



**Plate I:** Fruit bodies of the Grey Waxcap (*Cuphophyllum lacmus*) in Heather at the North End  
© David George.

| Term                          | Meaning                                                                                                                                                                                                                               |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASV                           | Actual Sequence Variant: DNA sequence that represents a true biological sequence after correcting for errors                                                                                                                          |
| basidiolichen                 | Lichen made up of a basidiomycete fungus (e.g gill fungi) and an alga                                                                                                                                                                 |
| biotrophic fungus             | A fungus only able to grow in association with a living plant                                                                                                                                                                         |
| CHEGD                         | Acronym of the names of fungi whose presence in grasslands indicates a high conservation value (Clavariaceae, Hygrophoraceae, Entolomataceae, Geoglossaceae & Dermoloma).                                                             |
| clade                         | A natural grouping of organisms that is composed of a common ancestor and all of its descendants.                                                                                                                                     |
| eDNA                          | Environmental DNA (DNA extracted from the natural environment- e.g. water, soil, air)                                                                                                                                                 |
| Metabarcoding                 | Large-scale sequencing of DNA barcode regions obtained from eDNA samples (for fungi/plants ITS2 locus is generally used)                                                                                                              |
| Endophytic fungus             | A fungus living inside a leaves, stems etc of a plant with little or no effect on the host                                                                                                                                            |
| epitypification               | Designation of a 'type' for a species where the original material, e.g a dried specimen used to name a species, no longer exists or was a painting                                                                                    |
| GenBank/NCBI                  | Public database of DNA and protein sequences run by the National Center for Biotechnology Information, Bethesda USA ( <a href="https://www.ncbi.nlm.nih.gov/">https://www.ncbi.nlm.nih.gov/</a> )                                     |
| Isotopic data                 | Relative abundance in the sample of (non-radioactive) isotopes (e.g 1% of nitrogen in air is the heavier <sup>15</sup> N isotope [with 99% being the more <sup>14</sup> N]). Similarly for <sup>13</sup> C and <sup>12</sup> C carbon |
| ITS2 region                   | Barcode region for metabarcoding of Fungi. Part of the ribosomal RNA (rRNA) locus. These genes encode components of the ribosome                                                                                                      |
| mycorrhiza                    | Mutual (symbiotic) association of plant roots with fungi                                                                                                                                                                              |
| NVC Classification            | System developed by John Rodwell for classification of plant communities across UK                                                                                                                                                    |
| ordination                    | Method of visualising complex (multivariate) data in simpler 2-dimensional (XY) plot. Where only the two most important components of variance across the samples are presented.                                                      |
| OTU                           | Operational taxonomic unit. Cluster of closely related sequences (typically 97% or more identical). Could represent the range of sequence of a given gene which occur in a single species                                             |
| PCoA                          | Principle Coordinates Ordination -an ordination method                                                                                                                                                                                |
| PCR                           | Polymerase Chain Reaction: a laboratory technique for rapidly copying specific segments of DNA, creating millions of copies from a tiny sample for analysis                                                                           |
| phylogenetic reconstruction   | Creating of a phylogenetic tree to reflect the evolution of a group of related organisms based on DNA sequences                                                                                                                       |
| Primer                        | Short synthetic DNA sequence used in PCR reactions                                                                                                                                                                                    |
| RA                            | Relative Abundance (here as % of all the fungal sequences in a sample)                                                                                                                                                                |
| Read/reads                    | A single sequence from the metabarcoding process                                                                                                                                                                                      |
| saprotrophic fungus           | A decomposer fungus which derives its nutrition from dead organic matter                                                                                                                                                              |
| Sequence/sequencing           | Determining the order (sequence) of nucleotides in a DNA molecule i.e. the DNA 'code'.                                                                                                                                                |
| SIMPER analysis               | SIMPER (SIMilarity PERcentages) analysis is a statistical method used in ecology to identify which species contribute the most to the differences between groups of samples                                                           |
| Taxon/taxa                    | usually species e.g of fungi                                                                                                                                                                                                          |
| Type specimen                 | original specimens used to first describe a species, usually based on the dried example kept in a herbarium (fungarium) but can be a painting (18th & 19th century taxonomy).                                                         |
| UNITE data base               | an international data base for the molecular identification of fungi and other organisms                                                                                                                                              |
| UNITE species hypothesis (SH) | Species Hypothesis code obtained from UNITE. Many but not all of these SH codes are linked to Latin binomial names for known organisms                                                                                                |

# FURTHER STUDIES BY eDNA METABARCODING OF THE ECOLOGY OF THE GREY WAXCAP (*CUPHOPHYLLUS LACMUS*) AND OTHER FUNGI ON LUNDY

by

RUBEN MOLE<sup>1</sup>, JOHN N. HEDGER<sup>2</sup>, ALAN ROWLAND<sup>3</sup>, ANDREW P. DETHERIDGE<sup>4</sup>  
AND GARETH W. GRIFFITH<sup>4\*</sup>

<sup>1</sup>Department of Life Sciences, Faculty of Natural Sciences,  
Imperial College London, London SW7 2AZ

<sup>2</sup> 9 Durnamuck, Dundonnell, Little Loch Broom, by Garve, Wester Ross,  
SCOTLAND, IV23 2QZ

<sup>3</sup> Mole Cottage, Woodford, Morwenstow, Cornwall, EX23 9JR,

<sup>4</sup> Department of Life Sciences, Pont Cledwyn, Aberystwyth University, Penglais,  
Aberystwyth WALES SY23 2DD

\* Corresponding author: [gwg@aber.ac.uk](mailto:gwg@aber.ac.uk)

## ABSTRACT

The metabarcoding of fungal environmental DNA (eDNA) was used to study the fungal community of ten 0.09 ha quadrats on Lundy dominated by Heather (*Calluna vulgaris*). At each site samples of soil, Heather roots and lichen (*Cladonia* species) were removed, and following storage and transport off the island were assayed by eDNA extraction and metabarcoding at Aberystwyth University. 1331 unique fungal OTUs (operational taxonomic units, approximating to species numbers) were detected in soil, lichen and roots. The northerly distribution of the Grey Waxcap (*Cuphophyllum lacmus*) on Lundy, previously established by fruit body surveys, was confirmed via eDNA. The significant presence of *C. lacmus* in Heather roots suggests it may be mycorrhizal (mutualistic), consistent with isotopic data and the general lack of saprotrophic ability amongst Hygrophoraceae. However, another agaric fungus, *Mycena galopus* was regularly the most abundant basidiomycete species detected in Heather roots, likely as a latent decomposer of senescent roots. A number of the other species of fungi found during the study represent new records for Lundy and data suggest an undescribed species of Waxcap may be present at the North End.

## INTRODUCTION

As of 2023 a total of 833 different species or forms of true fungi, excluding the Slime Moulds and the Chromista, have been recorded on Lundy (Lundy.org.uk 2024). The records are all based on morphology via identification of fruiting bodies of the macrofungi from field collections, as well as by microscopy of microfungi on living and dead plants and insects. Griffith *et al* (2020) were the first to study the mycoflora of Lundy by analysis

of fungal eDNA of profiles in soil samples. eDNA is DNA released from an organism into the environment (Niemiller *et al.*, 2017) and is a useful tool to assess biodiversity (Bellemain *et al.*, 2010) by comparing sequences to data held online

Griffith *et al* (2020) analysed fungal eDNA in soil samples across six selected sites on Lundy in 2016. The aim was to compare the results of fruiting body and eDNA surveys of grassland fungi, especially the CHEGD species : Clavariaceae (Club Fungi), Hygrophoraceae (Waxcaps), Entolomataceae (Pink Gills) , Geoglossaceae (Earth Tongues), Dermoloma/Porpoloma). Particular emphasis was placed on one species of Waxcap *Cuphophyllum lacmus* (Grey Waxcap). Yearly surveys in November by members of the Lundy Field Society since 2006 had shown that fruit bodies of this fungus seemed to be restricted to the heath of short Heather (*Calluna vulgaris*) and lichens (*Cladonia* spp.) on the north end of the island, none being found south of a line from Gannett's Coombe to St James stream on the west side, even on Heather dominated areas. Of the six sites studied, the samples from the two at the north end (one near John O'Groats and the other near Squires View), where fruit bodies of *C. lacmus* were regularly recorded, had significant presence of eDNA of this species (73% and 17 % respectively of the total fungal DNA) In contrast samples from the two grassland sites (Airfield and Castle Hill) had little or no *C. lacmus* eDNA .Of the two southerly Heather-dominated sample sites only one, below Rocket Pole, had significant presence of *C. lacmus* DNA but it was only 5% of the total fungal DNA in soil extracts. No fruit bodies of *C. lacmus* have ever been found here nor in the other sample site, above Quarry Pond.

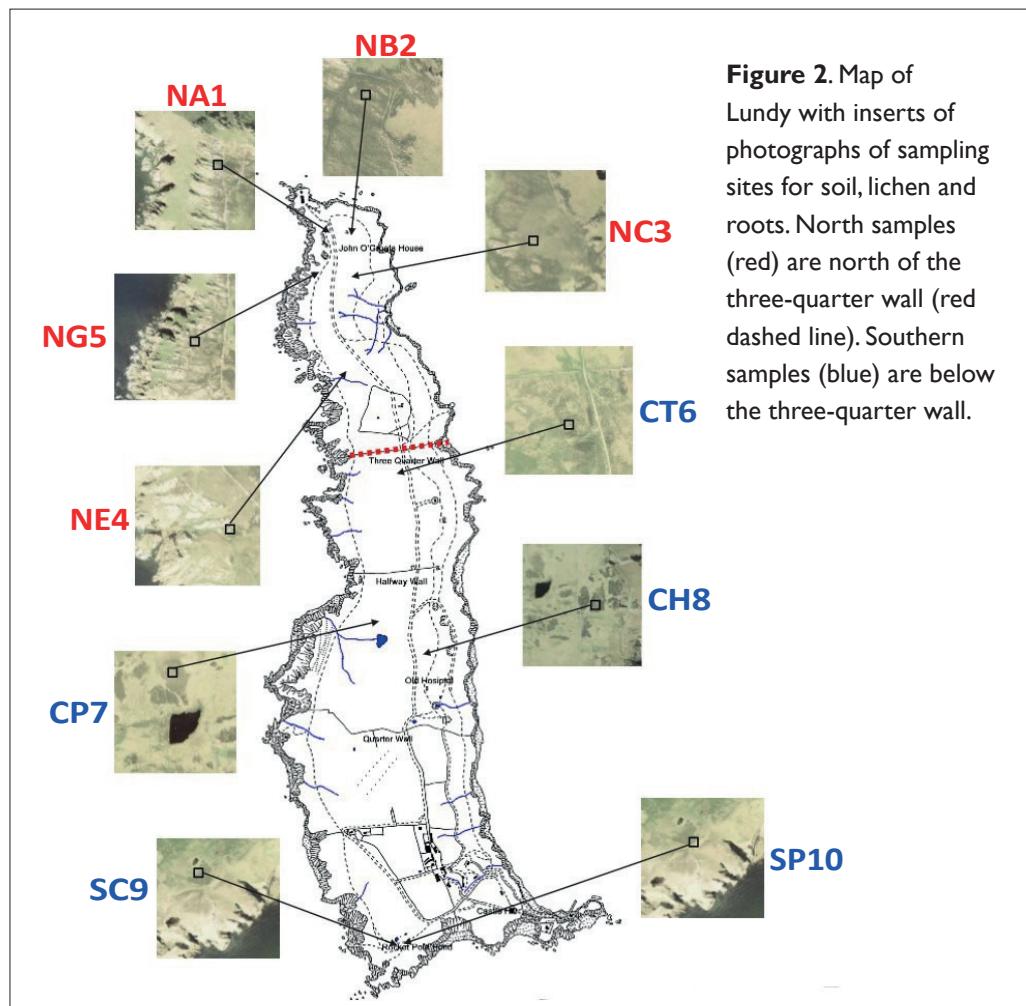
The Grey Waxcap thus seems to be largely restricted to the species-poor Heather/ lichen community at the north end of Lundy. The challenge is to determine the reason for this association. It is unlikely that the fungus acts as a decomposer saprotroph of Heather leaf and root litter in the soil, as *Cuphophyllum* and other Waxcap genera have yet to be grown in axenic culture (Halbwachs *et al.*, 2013a) and are not decomposer fungi in the usual sense, as they lack the depolymerase enzymes necessary to utilise lignocellulose from plant litter. A more likely hypothesis suggested by studies in grassland by Halbwachs *et al.* (2018), is that Waxcaps are biotrophic partners in mycorrhizal relationships with the roots of the higher plants. In the case of *C. lacmus* on Lundy, Heather is the most likely partner, being the only higher plant in the North End heathlands where its fruit bodies are found and where the soil samples also contained Grey Waxcap eDNA. Since the family Hygrophoraceae contains several genera of basidiolichens, notably *Lichenomphalia* e.g the Heath Navel (*L. ericetorum*) on Lundy, it is possible that *C. lacmus* may form an association with Chlorophyte algae (Oberwinkler, 2012).

We are also unaware of any similar observations of *C. lacmus* fruiting in such profusion amongst Heather from any other part of the British Isles and beyond. Lundy North End is very unusual from a vegetation perspective (Figure 1). From NVC classification it would be classified most closely to '*Calluna vulgaris-Cladonia arbuscula* heath' (NVC class H13a; (Rodwell, 1991)), a habitat mainly restricted to the Cairngorm region of Scotland. Unusually, the dominant lichen at the North End is *C. portentosa*, rather than *C. arbuscula* and *C. rangifera*, which more typically dominate H13a habitats. The unexpected presence of such a community at such low altitude and latitude, is likely to be due to the thin soils



**Figure 1.** Heather vegetation on Lundy. A: Long Roost North (site NA1), viewed from the south, with high cover of *Cladonia* spp. (foreground) and heather; B: Rocket Pole West (site SC9), viewed from the south, with higher heather cover and little lichen. Yellow flags show the locations of the sampling positions.

on granitic rock, combined with the high wind exposure and salt spray, as well as the low levels of nitrogen deposition, to which the site is subject (Tripp *et al.*, 2012). However, it may be that the severe fire at the North End in the 1930s (Langham 1992), which destroyed much of the vegetation cover, may also be a causal factor.


## AIMS

In order to test the hypothesis that the Grey Waxcap has a mycorrhizal association with either Heather or Lichen, more detailed island-wide sampling was needed. Consequently, sampling was carried out in April 2024 to compare its presence via eDNA extraction in soil, Heather roots and lichens at 10 sites north to south on Lundy

## METHODS

### a) Sample Collection

Sample collection at each site was based on the fungal eDNA sampling protocol set out by Natural England (Detheridge and Griffith, 2021). At each of the 10 sites (Figure 2), a 10 m x 10 m grid was laid out. Within each grid, 25 soil samples were taken with a T-bar gauge auger which had an 18 mm inner diameter and pooled into a sample bag; only the top 5cm of soil was taken. Four *Cladonia* thalli (each ca. 3x3 cm) were picked from a point 2 m from the edge of the grid and pooled as a single sample. It should be noted that no lichen samples were obtained from the two southern sites below Rocket Pole (SC9/SP10) due to their absence (Figure 2).



**Table 1.** Sample and sample site details

| Site code | Site name                  | La/Long              | Soil cores FW (g) | Heather root FW (g) | Lichen thallus FW (g) |
|-----------|----------------------------|----------------------|-------------------|---------------------|-----------------------|
| NA1       | Long Roost North           | 51.199845, -4.674841 | 195               | 1.3                 | 0.5                   |
| NB2       | John O'Groats House        | 51.199699, -4.673115 | 200               | 1.1                 | 0.5                   |
| NC3       | Gannets' Coombe            | 51.197597, -4.673056 | 188               | 0.7                 | 0.3                   |
| NE4       | St Peter's Stream          | 51.191669, -4.672654 | 193               | 0.9                 | 0.7                   |
| NG5       | Long Roost South           | 51.196979, -4.676416 | 200               | 1.3                 | 0.5                   |
| CT6       | Middle Park (Quarter Wall) | 51.190889, -4.668675 | 203               | 0.8                 | 0.5                   |
| CP7       | Pondsbury                  | 51.179143, -4.670674 | 210               | 0.5                 | 0.7                   |
| CH8       | Old Hospital               | 51.176913, -4.666633 | 213               | 1.2                 | 1.1                   |
| SC9       | Rocket Pole Pond West      | 51.161304, -4.668930 | 190               | 0.7                 | NA                    |
| SP10      | Rocket Pole Pond East      | 51.161253, -4.668541 | 195               | 0.7                 | NA                    |

Four Heather root samples were also taken 2 metres from the edge of the grid by cutting out a 10 cm x 10 cm x 5 cm (L x W x depth) soil block, which was then stored in a sample bag. On return to the Bird Observatory Laboratory in the Village, each root sample was soaked in water for at least 2 hours, after which the roots free of soil were removed with forceps, and washed again under water until 2 g of clean roots had been obtained; these were then stored in labelled sealed plastic bags. All sampling was undertaken on 5<sup>th</sup> April 2024 and samples were refrigerated within 6 hours of collecting. All equipment was scrupulously cleaned with soapy water between use on each site.

Since the site is protected under Section 28(E)(1)(a) of the Wildlife and Countryside Act 1981, sampling consent was obtained from Natural England (Charlotte Selway, Date: 4th March 2024)

### b) DNA Extraction

Samples were sent to Aberystwyth University by overnight courier and stored at -80°C until the DNA extraction protocol had begun. For all stages, samples from different sample locations and sample types (soil, Heather roots and lichen) were kept separate, and thorough cleaning of equipment and lab space was conducted between handling of different sample locations and when switching between sample types. For the first step of this protocol, all samples were freeze-dried. The soil was freeze-dried for 1 week, and Heather root and lichen material for 24 hours. The soil samples were then sieved twice, first through a 2 mm sieve and then a 0.5 mm sieve. A 50 mg sub-sample of the fraction which had passed the 0.5mm sieve was stored in 2 ml test tubes. Lichen samples were crushed in bags using a pestle and mortar, and subsamples weighing between 10 mg and 19.5 mg were stored in 2 ml test tubes. Heather root samples were crushed in individual pestles and mortars, and 142 mg and 365 mg sub-samples were placed in 2 ml tubes. All samples were stored at -20°C until DNA extraction.

The DNA extraction of soil was conducted using the DNeasy PowerSoil Pro Kit, as described by the manufacturer's instructions, alongside two blanks, with the exception that

50 mg of freeze-dried soil was used for each location due to the hypothesised organic nature of the soil. The DNA extraction of roots was conducted using CTAB PVP lysis buffer (2% cetyltrimethylammonium bromide, 2% polyvinylpyrrolidone, 100 mM Tris-HCl, 1.4 M NaCl, 20 mM EDTA) alongside two blanks. The DNA extraction of the lichen alongside two blanks was conducted using CTAB DNA extraction as above, but without the PVP (2% cetyltrimethylammonium bromide, 100 mM Tris-HCl, 1.4 M NaCl, 20 mM EDTA).

A polymerase chain reaction PCR was then conducted on the DNA extracted from the samples using primers fITS7 and ITS4 (to isolate the ITS 2 region), which were supplemented at the 5' end with adaptors for 2<sup>nd</sup> round PCR. The 2nd round PCR products were quantified using the Qubit v2 Fluorometer with the broad range dsDNA kit and pooled in equal concentrations. The pooled library was cleaned using Ampure XP beads (Beckman Coulter) and quality checked using a Bioanalyser 2100 with high sensitivity chips (Agilent) and sequenced on the Illumina MiSeq platform (2x300 bp paired end reads).

### c) Bioinformatics

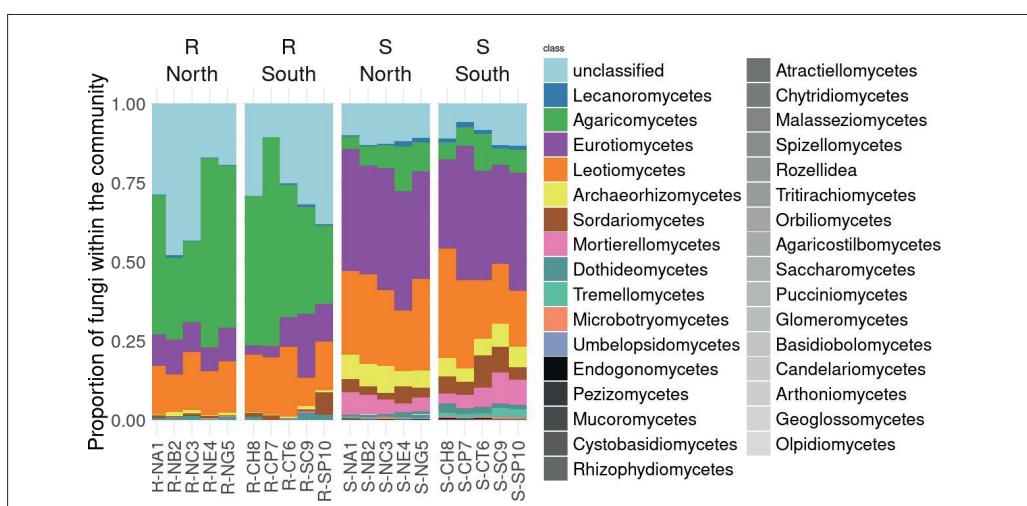
The Illumina 2x300 reads were paired using PEAR (Zhang *et al.*, 2014). Primer sequences were trimmed and the sequences quality checked with short sequences (<150bp) discarded using a Python script. Sequences were then clustered to actual sequence variants (ASV) using the UNoise3 algorithm (Edgar, 2016), singleton sequences and clusters of 5 or fewer sequences were rejected as likely sequence errors. Taxonomy of ASVs was assigned using the naïve Bayesian classifier (Wang *et al.*, 2007) against a data base created from UNITE v10 (downloaded February 2024) (Abarenkov *et al.*, 2024), with species hypotheses clustered at 98.5%.

The UNITE Species Hypothesis (SH) allows for identifying and communicating fungal species using DNA ITS sequences. Both described and undescribed fungal species are assigned a unique SH based on different levels of sequence identity (99.5% – 97%), here we use the numbers assigned to clusters at 98.5% identity. The SH is then assigned to a species name when those sequences are unambiguously named but can be left as a number if the species name is uncertain. This approach helps address the challenge of identifying fungal species, especially when actual species identification is absent but giving higher level taxonomic information.

## RESULTS AND DISCUSSION

### eDNA sequences recovered

From the soil and root samples taken from the five North and five South quadrats (see Figure 2 and Table 1 for a description of their locations), a total of 3,864,753 sequence reads were obtained. Following removal of singletons (sequences found only once) and low-quality sequences (76,868), as well as non-fungal sequences (254,048), there was a mean of 176,692 sequences per sample (range 108,618-263,435). Similar sequences (>98.5% identical) were grouped into unique 'Species Hypothesis' (SH) clusters using the UNITE database, where they were linked to taxon names. Most SHs are linked to named species but for others, identification was only possible to higher taxonomic levels, since a high proportion of fungi are not yet sequenced and some also do not yet have reference barcodes. Within the whole dataset of soil and root samples, 1333 unique fungal ASV's were detected.


**eDNA metabarcoding and distribution of 50 species of fungi in soil and root samples**  
 eDNA metabarcoding analysis of the soil and root samples from the ten Heather quadrats is shown in Table 2. Relative abundance (as % of all fungal DNA sequences) of the 50 most common fungal taxa detected is given for soil (left hand side as two columns, *Soil north and soil south* and Heather roots (right hand side as two columns, *Root north and root south*). Also shown in the second to last column are the average abundance of these species in the Heather root samples. The ratio of abundance of the taxa in soil vs. root samples is shown in the last column. The Grey Waxcap, *Cuphophyllum lacmus* and Milking Bonnet, *Mycena galopus* are indicated in blue and red font respectively. Lower rows of the table indicate the cumulative abundance of the major families/orders found in the soil and roots.

Even with meticulous washing of roots, it is not possible to be certain that all the adherent soil and mycelia have been removed (and some root fragments will be present in bulk soil). Equally it is likely that some of the roots sampled were in early stages of senescence. However, given the high disparity in relative abundance of different fungal species in roots vs soil (Table 2), it is likely that most have some endophytic capability and several may be mycorrhizal.

### Communities of fungi detected in the soil samples

Analysis of the fungal communities present in the ten samples at class level (Figure 3) reveals the dominance of classes Eurotiomycetes and Leotiomycetes. Orders Chaetothyriales (12 of the 50 most abundant taxa; notably family Herpotrichiellaceae) and Helotiales (12 of the 50 most abundant taxa; notably family Helotiaceae) were dominant across all samples (mean RA 35% and 21%), thus dominating the fungal community (Table 2).

It is known that many species within these taxa are associated with the roots of plants but they are taxonomically poorly known, so most are only identifiable to family level. However, the most abundant species in the soil was identified to species level: *Pezoloma ericae*,



**Figure 3.** Stacked bar chart, showing the more abundant classes of fungi detected by eDNA extraction in samples of soil and Heather roots from the North End sample sites.

**Table 2.** A list of the 50 most abundant species of fungi detected in soil and root eDNA at the 10 sampling sites

a known mycorrhizal symbiont of Heather (>10% mean relative abundance across all the samples). Also abundant were three species of the genus *Archaeorhizomyces*, a recently discovered group of abundant soil dwelling fungi (Rosling *et al.*, 2011), which are associated with ericoid hosts (Baba and Hirose, 2024). Several species of *Mortierella*, a genus found in higher abundance in Arctic/alpine soils were also abundant (Telagathoti *et al.*, 2021).

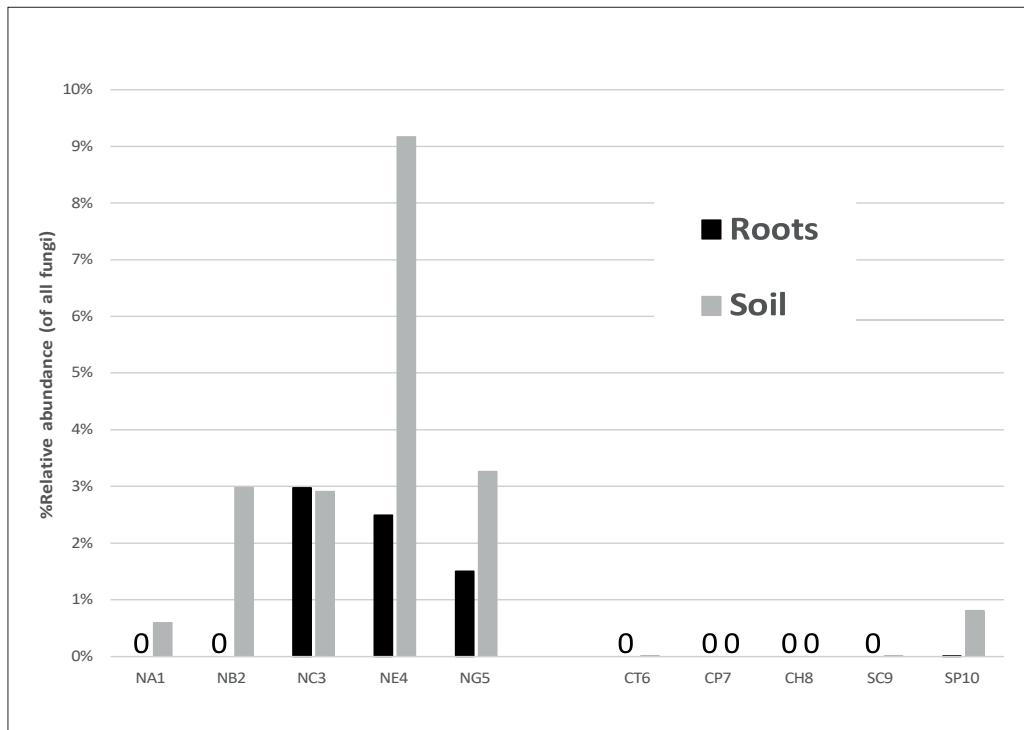
Ordination of the whole fungal community present in the soils showed that the fungal communities in soils from the North End were significantly different (PERMANOVA pseudo- $P=0.0159$ ) from those further south (Figure 4). SIMPER analysis revealed that the five taxa contributing most to this difference and explaining 26% of the total variance were: *Pezoloma ericae*, *Cuphophyllum lacmus* and three unidentified Chaetothyriales species.



**Figure 4.** Ordination of soil fungal communities using Principal Coordinates Ordination analysis (PCoA). The communities from quadrats at the north end and south end of Lundy were significantly different (PERMANOVA pseudo- $P = 0.0159$ ).

### CHEGD species of fungi found in the soil samples

In the Clavariaceae (Club and Coral Fungi), the most abundant was *Clavaria sphagnicola*, not yet recorded from fruit bodies on Lundy, which was present in 8/10 soil samples, including all the North End samples. As well as the Grey Waxcap, three other Waxcaps (Hygrophoraceae) were detected. Two were identifiable to species level (Goblet Waxcap, *Hygrocybe cantharellus* and Glutinous Waxcap, *Hygrocybe glutinipes*), with a fourth, detected in 3/5 of the North End soil samples, not matching any known species but closest

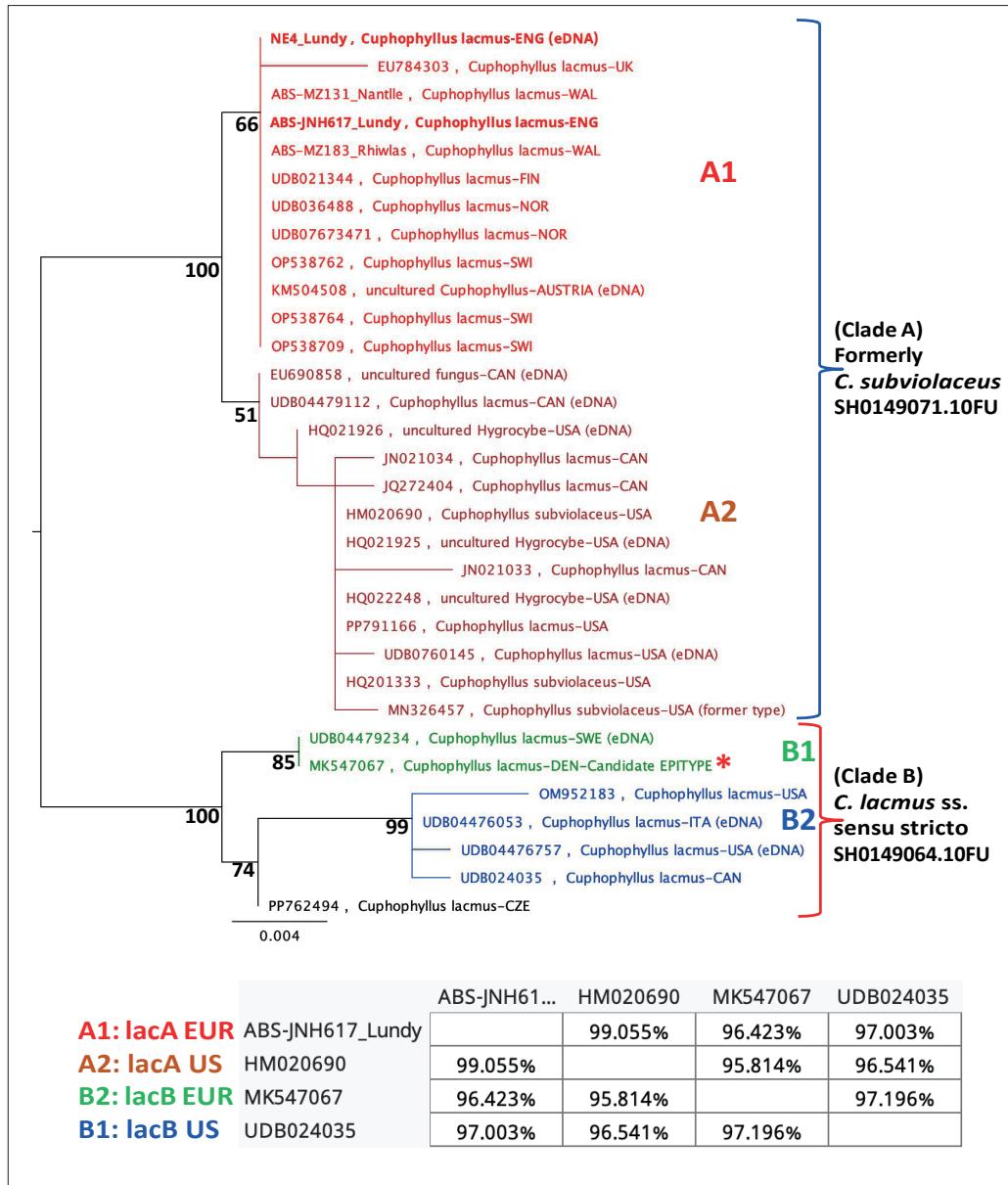

to the Cedarwood Waxcap *Cuphophyllum russocoriaceus*. The ITS2 sequence was only 93% identical to *C. russocoriaceus*, so may represents a new species. The basidiolichen Lichenomphalia *umbellifera* (not strictly a Waxcap but closely related and belonging to family Hygrophoraceae) was also detected in the soil from two quadrats.

Five Entolomas (Pink Gills, family Entolomataceae) were identifiable to species level *Entoloma elodes*, *E. jubatum* (Sepia Pinkgill); *E. conferendum* (Star Pinkgill); *E. turbidum* (Yellowfoot Pinkgill) and *E. ventricosum*. *E. elodes* and *E. ventricosum* have not yet been recorded for Lundy. The other species are widespread on Lundy though the Yellow Foot Pinkgill is recorded most frequently from the North End with Heather. No Geoglossaceae nor *Dermoloma* spp. were detected in soil samples. Many of the Clavariaceae and Entolomataceae sequences detected (37.2% and 8.1% respectively) could not be identified to species level, due to lack of reference DNA barcode or potentially the species being unknown to science, as are >95% of all fungi (Hawksworth and Lücking, 2017).

### **Grey Waxcap (*Cuphophyllum lacmus*).**

By far the most abundant CHEGD species in the eDNA from the soil samples was *C. lacmus* (1.97% mean relative abundance [RA] of all fungal sequences) (summarised in Figure 5). It was detected in all the North quadrats (mean RA 3.78%; maximum RA was 9.2% in quadrat NE4) but also present in three of the South quadrats though at lower RA (0.16%). These data are consistent with annual autumn monitoring of Lundy-wide fruiting of this species by Lundy Field Society members since 2006 (summarised in Griffith *et al.* 2020), the north end being the only place it has been found. The *C. lacmus* sequences detected from soil samples in the present study confirmed the northern distribution of the fungus on Lundy, though the detection of *C. lacmus* eDNA in soil at site SP10 (below Rocket Pole and above the Devil's Limekiln), a finding also made by Griffith *et al.* (2020), means that the species is present in more southerly quadrats but only as a minor component of the soil mycota. Data from GBIF (<https://www.gbif.org/species/2538616>) do not indicate that *C. lacmus* is particularly associated with heathland vegetation but for most of the >2000 global records, no habitat description is provided. However, several UK mycologists report that they encounter this species commonly in heathland habitats (Emma Williams and David Mitchel, personal communications, 2025).

Our earlier eDNA analysis (Griffith *et al.*, 2020) included two heathland quadrats (Lu2/Lu3) from the north end of the island. The metabarcoding approach used was slightly different (LSU S1 barcode locus which provides inferior taxonomic resolution compared to ITS2) but, as in the present study, *C. lacmus* was the dominant Waxcap in both quadrats. Whilst it is risky to make direct comparison of the RA (relative abundance) of *C. lacmus*, it is noteworthy that the RA of *C. lacmus* from the heathland quadrats was higher (74% and 17%) than found in the present study. This may relate to the dates of sampling, February 2016 in the 2020 report, vs April in the present study, where decomposition of roots which had died over the winter period could have resulted in a decline in *C. lacmus* RA in the April samples.

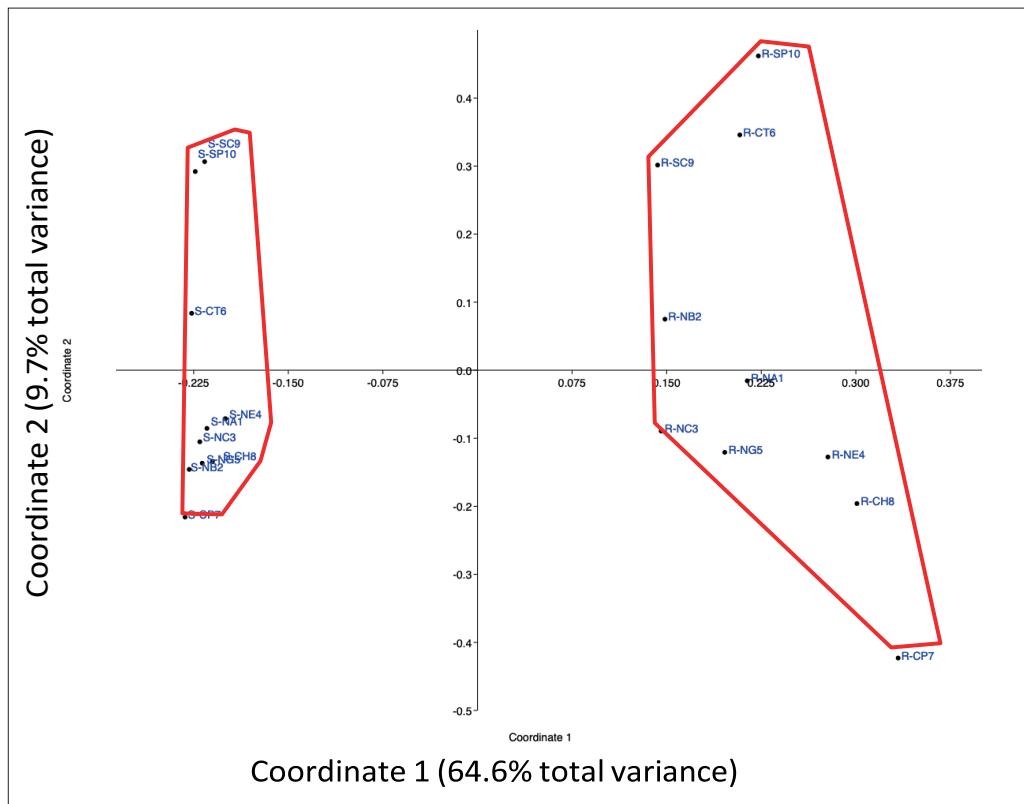



**Figure 5.** Percentage relative abundance of *Cuphophyllum lacmus* sequences in soil and roots from the ten quadrats.

The DNA sequence obtained from eDNA metabarcoding was identical to that obtained from a fruitbody collected at the North End in 2004. Comparison of these ITS sequences with others from the GenBank and UNITE sequence repositories and DNA barcodes from the Aberystwyth (ABS) fungarium revealed that *C. lacmus* exhibits some intraspecific variation, with two distinct clades present (Figure 6), corresponding to UNITE species hypotheses SHSH0149071.10FU and SH0149064.10FU (both at 97% clustering).

The Lundy samples and all other UK sequences sit close to a species formerly known as *C. subviolaceus* (Peck) Bon (Voitk *et al.*, 2020), mostly recognised from north America. However, this species was synonymised with *C. lacmus* by Bon (1985). The data presented here support Bon's decision, since, whilst distinct, the ITS sequences of the two clades are >96% identical and members of both clades are present both in northern Europe and north America. It is interesting to note that *C. lacmus* was first named (as *Agaricus lacmus*) by Schumacher in 1803 ("in ericetis circa" [amongst Heather] in Birkerød, Denmark). To our knowledge, Schumacher's observation is the only other record of *C. lacmus* being found in Heather.

It is suggested that formal epitypification of *C. lacmus* is undertaken, potentially using voucher C-F-17644 (GenBank MK547067), collected in Denmark by David Boertmann (Voitk *et al.*, 2020).




**Figure 6.** Phylogenetic reconstruction of the *Cuphophyllum lacmus* clade.

### Communities of fungi in the Heather roots

Fungal communities within the Heather roots clearly differed from those of the bulk soil (Figure 7). Whilst Leotiomycetes (mostly Helotiales) were still present at high abundance, root communities were dominated by Agaricomycetes (Gill Fungi). Of the top 40 fungal taxa present in roots at highest mean relative abundance, only 16 were also in the 40 most abundant in soil detected in roots (Appendix 1). SIMPER analysis showed that the ten species contributing most strongly to the differences between the root and soil samples and were more abundant in roots; two were *Mycena* spp. and three were very poorly

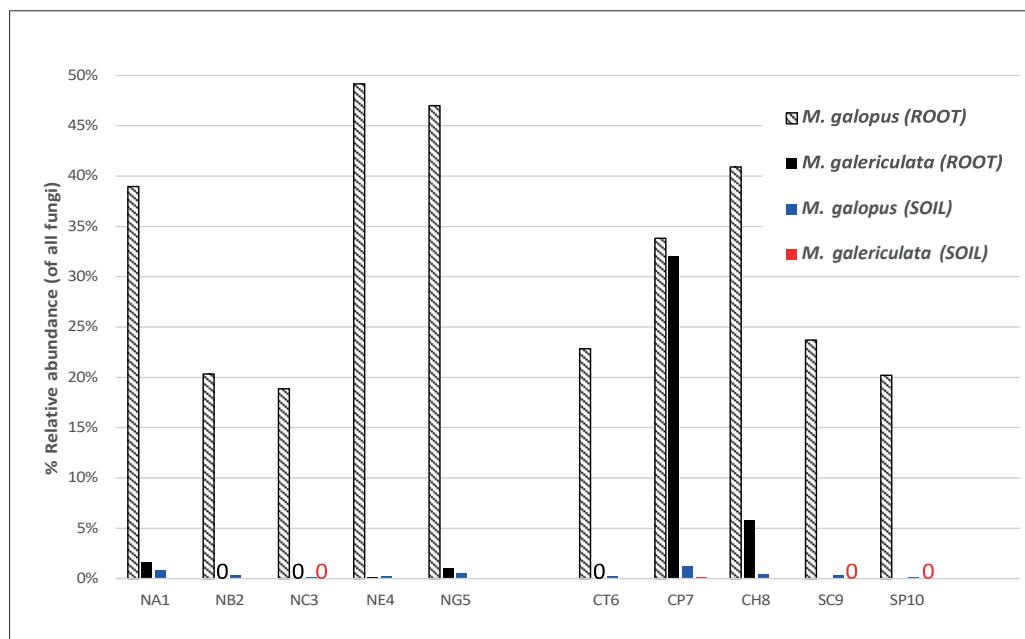
defined taxa identifiable only to phylum level or higher (Fungi\_sp:SH1010170.10FU; Ascomycota\_sp:SH0855981.10FU; Fungi\_sp:SH0748653.10FU). Of the 40 taxa most abundant in roots, 13 were at least 25-fold more abundant in roots than soil (Appendix 1) suggesting that they may have a role either as mycorrhizas or early-stage root decomposers.



**Figure 7.** Ordination of soil and root fungal communities using Principal Coordinates Ordination analysis (PCoA). The communities from soil and roots were significantly different (PERMANOVA pseudo- $P < 0.0001$ ).

### Grey Waxcap (*Cuphophyllum lacmus*) in roots of Heather

The Grey Waxcap, *C. lacmus*, was detected in 3/5 of the northern root samples and also in roots from one of the two southern quadrats where this species had been detected in soil in the 2020 survey (Griffith *et al.* 2020). In all but one of these samples, the relative abundance of *C. lacmus* was lower than in the associated soil (see figure 5). The nutrition of soil-dwelling Hygrophoraceae is not well-understood. Evidence from  $\delta^{15}\text{N}$  and  $\delta^{13}\text{C}$  isotopic analysis suggest that they may be mycorrhizal, since their isotopic profiles are very different from saprotrophic species, resembling those of ectomycorrhizal fungi (Seitzman *et al.*, 2011; Halbwachs *et al.*, 2018). Several other lines of evidence are also strongly suggestive of a biotrophic nutritional mode (Griffith *et al.*, 2012; Halbwachs *et al.*, 2013a; Halbwachs *et al.*, 2013b). The novel discovery of the presence of *C. lacmus* DNA in Heather roots (the only potential higher plant host present in the north Lundy heathland) is consistent with this


possibility. Further microscopic analysis is needed to characterise the nature of the putative mycorrhizal interface (Halbwachs *et al.*, 2013a).

### Mycena species in roots of Heather

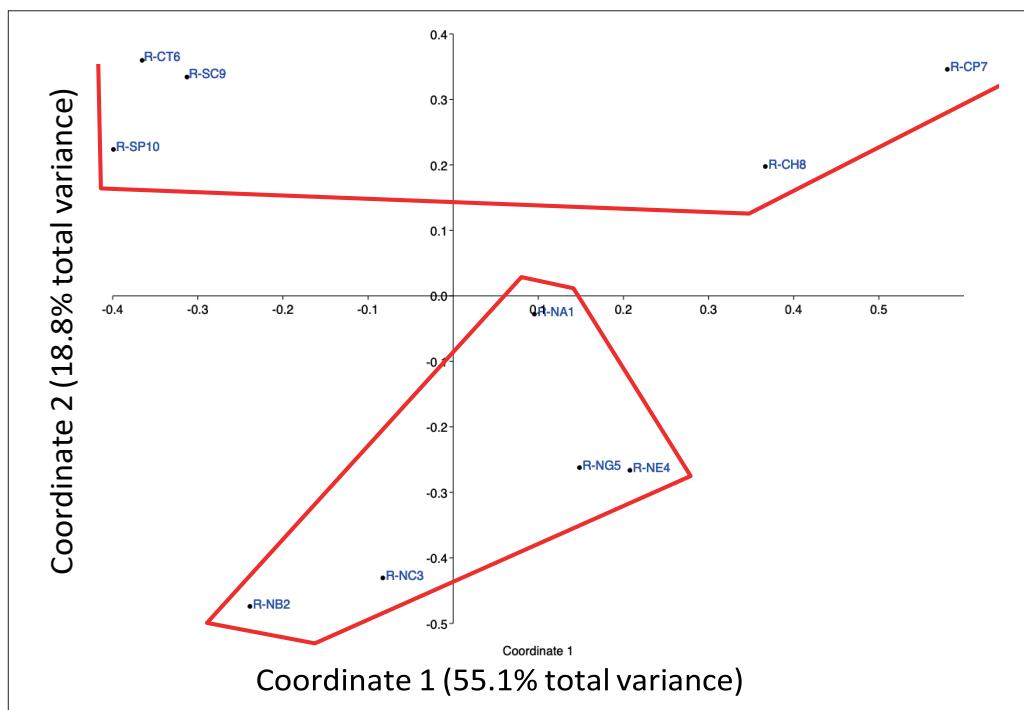
The gill fungus *Mycena galopus* (Milking Bonnet) was present in all root samples and was particularly dominant, comprising ca. 32% of the fungal sequences detected within roots. A second species, *Mycena galericulata* (Common Bonnet) was also present in most (7/10) root samples with a mean relative abundance of 4.1% (Figure 8), and in one root sample (CP7) these two species together comprised >65% of all the fungal DNA detected.

The dominance of the Heather root mycobiome in all quadrats by *Mycena galopus* was unexpected. Whilst *Mycena* spp. are generally considered to be litter saprotrophs (Emmett *et al.*, 2008), several studies have detected *M. galopus* (and other *Mycena* spp.) within the roots of Ericaceae, including *C. vulgaris* as well as in roots of Birch, *Betula* spp., Pine, *Pinus* spp. and several other Arctic-alpine host plants. These studies have also demonstrated a growth-promoting effect in some cases (*Vaccinium corymbosum* inoculated with *M. galopus* in plant-pot experiments), the formation of distinctive peg-like structure within roots and also some transfer of radiolabelled ( $^{32}\text{P}$ ) phosphate from the fungus to *Betula* seedlings (Grelet *et al.*, 2017; Thoen *et al.*, 2020).

More detailed investigation of the possible role of *Mycena* spp. in the roots of heathland plants has shown that they can invade the internal tissues of healthy roots. However, they do not display the distinctive  $^{15}\text{N}/^{13}\text{C}$  isotopic profiles observed in ectomycorrhizal fungi (and Hygrophoraceae), and the prevailing view at present is that they are latent-invading root saprotrophs (Harder *et al.*, 2023).



**Figure 8.** Percentage relative abundance of sequences of *Mycena galopus* and *Mycena galericulata* detected in Heather roots (black) and soil (blue/red) from the ten quadrats.


### Other fungi present in Heather roots.

The second most abundant taxon in roots was an unidentified *Sclerococcum* species (SH0855981.10FU; family Dactylosporaceae, Ascomycota), which was also abundant in soil. Members of this genus are often lichenicolous and abundant in tundra soils (Alstrup *et al.*, 2009; Huusko *et al.*, 2024). However, this particular species was found only at very low abundance in lichen thalli in the quadrats (see below), suggesting that the ecological niche of this particular species is very different from other members of this genus.

Another unusual, potentially mycorrhizal, species found in the root samples (>50-fold more abundant than in soil), was an unidentified ascomycete *Colpoma* species (SH0748653.10FU; ascomycete family Rhytismataceae), also abundant in ericoid roots in Bohemia (Vohník *et al.*, 2023).

### Comparison of fungal communities in Heather roots: north vs south Lundy.

Ordination of the root-inhabiting fungal communities from the North and South quadrats revealed them to be significantly different (PERMANOVA pseudo- $P < 0.0487$ ; Figure 9). The species primarily responsible for this difference were identified via SIMPER analysis as *Mycena galopus*, Ascomycota sp:SH0855981.10FU and Fungi\_sp:SH1010170.10FU (all more abundant in northern quadrats), whereas *Mycena galericulata*, Fungi sp:SH0858794.10FU, Fungi sp:SH0897234.10FU and *Trechisporales* sp:SH1010152.10FU were more abundant in southern quadrats.



## Results of eDNA extraction from the lichen samples

eDNA analysis of eight lichen samples from each of the North quadrats and three of the South quadrats, found no trace of *C. lacmus*. No other CHEGD fungi were detected in any of the lichen thallus samples. As expected, the dominant fungus in the lichen thalli was *Cladonia portentosa* (SH0933093.10FU), with small amounts of other *Cladonia* species, including *C. ciliata* (SH0932955.10FU) and *C. furcata* (SH0993788.10FU) (data are summarised in Appendix 2).

Within the lichen thalli examined, 353 ASV's were detected, of which 246 and 101 were also detected in soil or roots respectively, with 98 ASV's being unique to lichen thalli. These included lichenicolous fungi, for example *Zyzygomyces bachmannii* (SH0880452.10FU; Filobasidiaceae), a well-defined lichenicolous fungus, specific to *Cladonia* spp. (Diederich *et al.*, 2022). Two of the other abundant taxa, *Xenopolyscytalum* sp. (SH1012222.10FU; Pezizellaceae) and *Neopestalotiopsis* (SH0911533.10FU; Sporocadaceae), have also been reported from within lichen thalli (Park *et al.*, 2015; Masumoto and Degawa, 2019) (see Appendix 2).

The eDNA metabarcoding method used here also detects members of kingdom Viridiplantae (higher plants/green algae), so it is also possible to identify the Chlorophyta photobionts associated with the lichenised fungi. The most abundant of the Viridiplantae was *Astrochloris woessiae* (SH0769029.10FU; Trebouxiaceae), comprising 71% of the non-fungal sequences. Members of genus *Astrochloris* are the dominant photobionts of *Cladonia* spp. (Pino-Bodas and Stenroos, 2021). Smaller amounts of other Trebouxiaceae (*Trebouxia suecica*:SH0769319.10FU) were also detected but only at very low abundance.

*Coccomyxa viridis* (SH0832661.10FU; Coccomyxaceae) and several unidentified species of the same genus were abundant in all the lichen thalli, comprising ca. 18% of the non-fungal sequences (and >50% in one case). Although *Coccomyxa* spp. are photobionts associated with *Licheomphalia* and several other basidiolichens (Oberwinkler, 2012), they are generally regarded as “non-photobiont” algae. However, it has recently been discovered that they are abundant in the internal tissues of the thalli of many lichen species globally (Tagirdzhanova *et al.*, 2023), and it is possible that their significance in the lichen symbiosis (relative to Terebouxiaceae algae) has hitherto been underestimated.

The same range of *Coccomyxa* spp. were also detected in the soil eDNA samples, though the most abundant (*Coccomyxa* sp:SH0818359.10FU) was not the dominant species in the thalli. The significance of these algae was only recently discovered and their ecological significance and potential photosynthetic contribution to the lichen thallus economy is at present unclear.

## CONCLUSIONS

- This study deployed eDNA analysis to further investigate the apparent restriction of fruit bodies of the Grey Waxcap, *Cuphophyllum lacmus*, to the heathland areas of north Lundy. This distribution was largely confirmed by the soil data and presence of the fungus in the roots of the Heather adds weight to the hypothesis that this species and perhaps other Waxcap fungi are mycorrhizal.
- The fact that the relative abundance of *C. lacmus* in soil samples from the present study (taken in April) was much lower than observed in our earlier 2016 sampling (February)

(Griffith *et al.*, 2020) raises the possibility that there may be a strong seasonal component. There is high turnover of Heather and other root tissues in heathland ecosystems (Aerts *et al.*, 1989; Aerts *et al.*, 1992), root mortality is known to exhibit seasonal variation (Huo *et al.*, 2022; Garthen *et al.*, 2025). Thus the putatively mycorrhizal *C. lacmus* would be expected to proliferate during periods of root growth in the summer, both inside the roots (mycorrhizal interface) and in the soil (uptake network).

- Despite the fact that *Cladonia portentosa* thalli were also much more abundant in the north end quadrats, we found no evidence of any association between *C. lacmus* and the *Cladonia* lichens.
- One surprising outcome of the study was the consistent presence of DNA of *Mycena* species in the roots of Heather across all the study sites, raising the possibilities of an undiscovered relationship between the plant and these *Mycena* species. It is hypothesised that latent colonisation of healthy roots by *Mycena* may accelerate decomposition of dead roots and more rapid recycling of their nutrients. Microscopic analysis of roots could elucidate the role of both *Mycena* spp. and also *C. lacmus* in Heather roots, though since both bear clamp connections, some means of staining the hyphae of one species but not the other (e.g. Fluorescent *in situ* hybridisation using sequence specific probes) would need to be devised.
- Any latently invading *Mycena* spp. would show the opposite pattern to infection by *C. lacmus*, proliferating as roots senesce/die in Winter and early Spring, thus mediating rapid decomposition of dead roots and rapid recycling of nutrients contained within them.
- Whilst the majority of fungi detected via eDNA were microfungi, and thus not easily detectable by field surveys of fungi, several species not previously known from Lundy were revealed to be present. For example, the lichenicolous *Zyzygomyces bachmannii*, which causes distinctive deformation of *Cladonia* podetia (<https://www.dorsetnature.co.uk/pages-lichen/Ich-433.html>) was widely present and should be easily discoverable if sought.
- Similarly, it would be good to pay particular attention to any small white Waxcaps found in heathland areas, these may be fruitbodies of a hitherto unknown (or not yet DNA barcoded) species close to the Cedarwood Waxcap *Cuphophyllum russocoriaceus*.

## ACKNOWLEDGEMENTS

RM thanks the Lundy Field Society for a generous research grant which made it possible for him to travel to Lundy and carry out the field work. We also thank the LFS for an additional grant to support consumables for the DNA sequencing work carried out by RM in Aberystwyth in the laboratory of Professor Gareth Griffith. We also thank the Lundy Warden Joe Parker and Natural England for permission to carry out the sampling on the SSSI on Lundy and the Lundy Bird Observatory for the use of their headquarters to carry out the sample preparation.

**Appendix 1** Relative abundance (as % of all fungal sequences detected) of the 40 most abundant fungal taxa detected in Heather roots.

## Appendix 2 Relative abundance of eDNA of species of fungi in lichen thalli

## REFERENCES

Abarenkov, K., Nilsson, R.H., Larsson, K.-H., Taylor, A.F., May, T.W., Frøslev, T.G., Pawłowska, J., Lindahl, B., Pöldmaa, K., Truong, C., 2024. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. *Nucleic Acids Research* **52**: D791-D797.

Aerts, R., Bakker, C., De Caluwe, H., 1992. Root turnover as determinant of the cycling of C, N, and P in a dry heathland ecosystem. *Biogeochemistry* **15**: 175-190.

Aerts, R., Berendse, F., Klerk, N., Bakker, C., 1989. Root production and root turnover in two dominant species of wet heathlands. *Oecologia* **81**: 374-378.

Alstrup, V., Kocourková, J., Kukwa, M., Motiejūnaitė, J., von Brackel, W., Suija, A., 2009. The lichens and lichenicolous fungi of South Greenland. *Folia Cryptogamica Estonica* **46**: 1-24.

Baba, T., Hirose, D., 2024. Two novel *Archaeorhizomyces* species isolated from ericoid mycorrhizal roots and their association with ericaceous plants in vitro. *Fungal Biology* **128**: 1939-1953.

Bon, M., 1985. [1984] Le genre *Cuphophyllum* (Donk) st. nov. . *Documents Mycologiques* **14**: 9-12.

Detheridge, A.P., Griffith, G.W., 2021. Standards, methodology and protocols for sampling and identification of grassland fungus species. Natural England Commissioned Report NECR374, 81pp. (<http://publications.naturalengland.org.uk/file/6311017633284096>).

Diederich, P., Millanes, A.M., Wedin, M., Lawrey, J.D., 2022. Flora of lichenicolous fungi, Vol. 1, Basidiomycota. National Museum of Natural History, Luxembourg.

Edgar, R.C., 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. . *bioRxiv*:081257.

Emmett, E.E., Aronsen, A., Læssøe, T., Elborne, S.A., 2008. *Mycena* (Pers.) Roussel. . In: Knudsen H, Vesterholt J (eds) *Funga Nordica: Agaricoid, Boletoïd, and Cyphelloïd genera*. Nordsvamp, Copenhagen, : p 352e387.

Garthen, A., Brandt, K., Klisz, M., Malyshev, A.V., Peters, B., Weigel, R., Kreyling, J., 2025. Seasonal dynamics of fine root length in European beech: unveiling unexpected winter peaks and summer declines. *Oecologia* **207**: 1-9.

Grelet, G.-A., Ba, R., Goeke, D.F., Houlston, G.J., Taylor, A.F., Durall, D.M., 2017. A plant growth-promoting symbiosis between *Mycena galopus* and *Vaccinium corymbosum* seedlings. *Mycorrhiza* **27**: 831-839.

Griffith, G.W., Hedger, J.N., Rowland, A., 2020. A comparison of fruitbody and eDNA survey approaches for assessing the distribution of mycelia of macrofungi in the grassland and heathland of Lundy. *Journal of the Lundy Field Society* **7**: 87-106.

Griffith, G.W., Roderick, K., Graham, A., Causton, D.R., 2012. Sward management influences fruiting of grassland basidiomycete fungi. *Biological Conservation* **145**: 234–240.

Halbwachs, H., Dentinger, B.T., Detheridge, A.P., Karasch, P., Griffith, G.W., 2013a. Hyphae of waxcap fungi colonise plant roots. *Fungal Ecology* **6**: 487-492.

Halbwachs, H., Easton, G.L., Bol, R., Hobbie, E.A., Garnett, M.H., Peršoh, D., Dixon, L., Ostle, N., Karasch, P., Griffith, G.W., 2018. Isotopic evidence of biotrophy and unusual nitrogen nutrition in soil-dwelling Hygrophoraceae. *Environmental microbiology* **20**: 3573-3588.

Halbwachs, H., Karasch, P., Griffith, G.W., 2013b. The diverse habitats of *Hygrocybe* – peeking into an enigmatic lifestyle. *Mycosphere* **4**: 773-792.

Harder, C.B., Hesling, E., Botnen, S.S., Lorberau, K.E., Dima, B., von Bonsdorff-Salminen, T., Niskanen, T., Jarvis, S.G., Ouimette, A., Hester, A., 2023. Mycena species can be opportunist-generalist plant root invaders. *Environmental Microbiology* **25**: 1875-1893.

Hawksworth, D.L., Lücking, R., 2017. Fungal diversity revisited: 2.2 to 3.8 million species. *Microbiology spectrum* **5**: 10.1128/microbiolspec. funk-0052-2016.

Hedger, J.N., George, J.D., Griffith, G.W., Deacon, L., 2006. Macrofungi on Lundy, Lundy Studies: Proceedings of the 60th Anniversary Symposium of the Lundy Field Society, pp. 139-160.

Hedger, J.N., George, J.D., Griffith, G.W., Peiris, D., 2010. Lundy fungi: Further surveys 2004-2008. *Journal of the Lundy Field Society* **2**: 21-44.

Huo, C., Gu, J., Yu, L., Wang, P., Cheng, W., 2022. Temporal dynamics of fine root production, mortality and turnover deviate across branch orders in a larch stand. *Oecologia* **199**: 699-709.

Huusko, K., Manninen, O.H., Myrsky, E., Stark, S., 2024. Soil fungal and bacterial communities reflect differently tundra vegetation state transitions and soil physico-chemical properties. *New Phytologist* **243**: 407-422.

Langham, A.F. 1992. The Lundy Fires of 1933. Annual Report of the Lundy Field Society, 1991, 42: 99-100

Masumoto, H., Degawa, Y., 2019. The effect of surface sterilization and the type of sterilizer on the genus composition of lichen-inhabiting fungi with notes on some frequently isolated genera. *Mycoscience* **60**: 331-342.

Niemiller, M.L., Porter, M.L., Keany, J., Gilbert, H., Fong, D.W., Culver, D.C., Hobson, C.S., Kendall, K.D., Davis, M.A., Taylor, S.J., 2018. Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered *Stygobromus* (Amphipoda: Crangonyctidae). *Conservation Genetics Resources* **10**: 247-257.

Oberwinkler, F., 2012. Basidiolichens (Chapter 16), Fungal associations. Springer, pp. 341-362.

Park, C.H., Kim, K.M., Elvebak, A., Kim, O.S., Jeong, G., Hong, S.G., 2015. Algal and fungal diversity in Antarctic lichens. *Journal of Eukaryotic Microbiology* **62**: 196-205.

Pino-Bodas, R., Stenroos, S., 2021. Global biodiversity patterns of the photobionts associated with the genus *Cladonia* (Lecanorales, Ascomycota). *Microbial Ecology* **82**: 173-187.

Rodwell, J.S., 1991. British Plant Communities, Volume 2: Mires and Heaths. Cambridge University Press, Cambridge.

Rosling, A., Cox, F., Cruz-Martinez, K., Ihrmark, K., Grelet, G.-A., Lindahl, B.D., Menkis, A., James, T.Y., 2011. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. *Science* **333**: 876-879.

Seitzman, B.H., Ouimette, A., Mixon, R.L., Hobbie, E.A., Hibbett, D.S., 2011. Conservation of biotrophy in Hygrophoraceae inferred from combined stable isotope and phylogenetic analyses. *Mycologia* **103**: 280-290

Tagirdzhanova, G., Scharnagl, K., Yan, X., Talbot, N.J., 2023. Genomic analysis of *Coccomyxa viridis*, a common low-abundance alga associated with lichen symbioses. *Scientific reports* **13**: 21285.

Telagathoti, A., Probst, M., Peintner, U., 2021. Habitat, snow-cover and soil pH, affect the distribution and diversity of mortierellaceae species and their associations to bacteria. *Frontiers in microbiology* **12**: 669784.

Tripp, E.J., Crittenden, P.D., Eichhorn, M.P., 2012. Plant diversity of a lowland heathland site on Lundy. *Journal of the Lundy Field Society* **3**: 33-40.

Thoen, E., Harder, C.B., Kauserud, H., Botnen, S.S., Vik, U., Taylor, A.F., Menkis, A., Skrede, I., 2020. In vitro evidence of root colonization suggests ecological versatility in the genus *Mycena*. *New Phytologist* **227**: 601-612.

Vohník, M., Bruzone, M.C., Knoblochová, T., Fernández, N.V., Kolaříková, Z., Větrovský, T., Fontenla, S.B., 2023. Exploring structural and molecular diversity of Ericaceae hair root mycobionts: a comparison between Northern Bohemia and Argentine Patagonia. *Mycorrhiza* **33**: 425-447.

Voitk, A., Saar, I., Lodge, D.J., Boertmann, D., Berch, S.M., Larsson, E., 2020. New species and reports of *Cuphophyllum* from northern North America compared with related Eurasian species. *Mycologia* **112**: 438-452.

Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. *Applied and Environmental Microbiology* **73**: 5261-5267.

Zhang, J., Kobert, K., Flouri, T., Stamatakis, A., 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. *Bioinformatics* (Oxford, England) **30**: 614-620.